My Lecture Notes on Calculus
نویسندگان
چکیده
منابع مشابه
Lecture Notes on Stochastic Calculus (Part I)
1 Probability “review” 3 1.1 σ-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Probability measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Distribution of a random variable . . . . . . . ....
متن کاملLecture Notes on Stochastic Calculus (Part II)
2 Ito-Doeblin’s formula(s) 7 2.1 First formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Continuous semi-martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Integration by parts formula . . . . . . . . . . . ...
متن کاملLecture notes on the lambda calculus
This is a set of lecture notes that developed out of courses on the lambda calculus that I taught at the University of Ottawa in 2001 and at Dalhousie University in 2007. Topics covered in these notes include the untyped lambda calculus, the Church-Rosser theorem, combinatory algebras, the simply-typed lambda calculus, the Curry-Howard isomorphism, weak and strong normalization, type inference,...
متن کاملSubstitution in Lambda Calculus Lecture Notes
We study the formalization of lambda calculus based on De Bruijn terms. The most interesting aspect is a system of substitution primitives and an accompanying equational theory providing for algebraic proofs. The equational theory can be presented as a confluent and terminating rewriting system providing for proof automation. We prove that parallel reduction is strongly substitutive, the key pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Mathematical Gazette
سال: 1915
ISSN: 0025-5572,2056-6328
DOI: 10.2307/3602292